手机浏览器扫描二维码访问
太阳计划的推进陷入了瓶颈,能量收集与转化效率远不及预期,愁云笼罩着整个科研团队。腾双眼布满血丝,正和团队成员激烈讨论,这时,英匆匆赶来。
腾抬起头,眼中满是疲惫与焦急:“英,你可来了。现在能量收集板的转化效率始终卡在30%,离我们设定的50%目标差太远。”
英看着满桌的资料和数据,神色凝重:“我一路上仔细想了,从生态科学角度,植物光合作用能高效利用光能,我们或许能从其原理找突破。你们目前尝试了哪些方向?”
团队成员马克推了推眼镜,说道:“我们已经优化了收集板的材料结构,尝试了十几种新型复合材料,可效果都不理想。而且,在能量转化的电路设计上,也反复调整,还是不行。”
英沉思片刻,问道:“那在模拟光合作用方面,有没有考虑过模拟其光反应阶段的电子传递过程?通过构建类似的高效电子传递链,也许能提升能量转化。”
腾眼睛一亮:“这个思路很新颖。但光合作用中的电子传递依赖于复杂的生物分子结构,在我们的设备上怎么模拟实现呢?”
英走到白板前,拿起笔边画边说:“我们可以用纳米材料构建类似的结构。比如,利用碳纳米管来模拟生物分子的传导路径,它的导电性和稳定性都很高。”
团队成员莉莉面露疑惑:“英博士,碳纳米管虽然性能好,但在大规模生产和整合到现有设备上,可能会面临成本和技术难题。”
英点点头:“这确实是个问题。不过我们可以先在实验室小规模试验,如果可行,再想办法优化生产工艺降低成本。另外,在能量收集阶段,我们是否可以改变收集板的表面微观结构?”
腾皱眉思考:“改变微观结构?你的意思是像植物叶子表面那样,有特殊的纹理来更好地捕获光能?”
“对!”英肯定地说,“植物叶子表面的微纳结构能减少光反射,增加光吸收。我们可以通过微纳加工技术,在收集板表面制造类似结构。”
团队成员汤姆挠挠头:“可不同波段的光,对微观结构的要求可能不同,我们该怎么平衡?”
英回答:“这就需要精确的光学模拟和实验测试。先确定主要吸收的光波段,针对性设计结构,再逐步优化。腾,你们之前对不同波段光的能量收集效率有详细数据吗?”
腾立刻翻找资料:“有!在可见光的蓝光和红光波段,收集效率相对较高,但近红外波段一直很低。”
英看着数据说:“那我们重点从近红外波段入手。近红外光能量丰富,提高它的收集效率对整体提升很关键。我们可以尝试在收集板表面添加对近红外光敏感的材料。”
马克疑惑道:“添加敏感材料不难,但怎么保证它与其他部分协同工作,不影响整体性能?”
英思索片刻:“可以通过在材料表面修饰特殊的官能团,使其与收集板的基础材料形成化学键合,增强相互作用。这样既能保证稳定性,又能协同工作。”
腾边记录边说:“这个方法值得一试。还有,在能量转化后的存储环节,我们也遇到了一些损耗问题。”
英问道:“是存储设备的漏电,还是转化过程中的能量散失?”
团队成员大卫回答:“两者都有。目前的电池储能效率不高,而且在充电过程中,有部分能量以热能形式散失了。”
英皱着眉头思考:“对于电池漏电问题,可以尝试给电池添加一层特殊的绝缘涂层,减少电子泄漏。至于能量散失为热能的问题,我们能不能在转化电路中加入高效的散热和能量回收装置?”
腾疑惑道:“能量回收装置?怎么实现?”
英解释:“当能量以热能形式散失时,我们可以利用热电材料,将热能重新转化为电能。虽然不能百分百回收,但能减少部分损耗。”
莉莉提出疑问:“热电材料的转化效率有限,会不会得不偿失?”
英说:“我们可以通过优化热电材料的成分和结构,提高转化效率。而且,即使只能回收一小部分能量,长期积累下来也很可观。”
汤姆又问:“那在设备的整体封装方面,要不要考虑特殊设计来减少能量损耗?”
英点头:“非常有必要。可以采用多层复合封装材料,既能保证设备的密封性,又能起到隔热、防辐射等作用,减少外界因素对能量收集和转化的干扰。”
腾看着团队成员,充满信心地说:“大家听到了吧,英博士给我们提供了这么多新思路。接下来,我们分组行动,一部分人研究模拟光合作用的电子传递,一部分人负责微纳结构设计和近红外光敏感材料添加,还有一组研究电池绝缘涂层和能量回收装置,以及设备封装。大家有没有信心?”
众人齐声喊道:“有!”
在接下来的日子里,团队成员日夜奋战。一周后,负责模拟光合作用电子传递的小组传来消息。
马克兴奋地冲进会议室:“成功了!利用碳纳米管构建的模拟电子传递链,在实验室测试中,将能量转化效率提高了5个百分点!”
腾激动地拍了拍马克的肩膀:“干得好!其他小组呢?”
负责微纳结构设计的莉莉笑着说:“我们在收集板表面制造出了类似植物叶子的微纳结构,近红外光的收集效率提高了8个百分点!”
负责能量回收和封装的大卫也笑着汇报:“电池绝缘涂层有效减少了漏电,能量回收装置也成功回收了约10%的热能,封装设计能有效降低外界干扰!”
腾看着大家,眼眶有些湿润:“太棒了,大家的努力没有白费。英,这次多亏了你。”
英笑着说:“是大家共同的功劳。我们继续努力,相信很快就能达到目标效率!”
在众人的努力下,太阳计划终于突破了技术瓶颈……
喜欢腾和英的星辰大海请大家收藏:(www。aiquwx。com)腾和英的星辰大海
官海惊涛 太傅家的一品锦鲤妻 如懿传之凤临天下 我就拍个照,怎么重生了 精灵宝可梦:搞事恋爱冠军我全要 大佬娇宠,沪上美人撩不停 青葱时代 钓鱼:身为钓鱼佬,我有保底收入 起源异界 甜蜜家庭 涛起微澜 新婚夜被抛乱葬岗,她炸了侯府 重生我是时代传奇 抱歉,有实力的宗主就是可以为所欲为 御兽无限红词条,刚出新区碾万族 为师逍遥世间,全靠徒弟逆天 如懿传如意欢心 分手后:前女友仰望我登顶 一离婚,就开挂,渣男一家原地哭瞎! 三国:开局用玻璃杯换二乔
正统十四年,老爹朱祁镇御驾亲征,本是想将大明威仪远播塞外,没成想,竟是肉包子打狗,有去无回,沦为叫门皇帝,没有利用价值后,被放回了京师,幽禁南宫,现在老爹又在叫门。在算着日子的朱见深有些慌...
陶醉是一朵含苞待放的小白花。含情脉脉,羞羞答答。骆北寻偏要上手扒开来,逼着她绽放。最后才发现,她似彼岸花般艳,比罂粟花还毒。让他一秒沉沦,弥足深陷。...
一个平凡的少年,意外发现家传绝学千金要方,从此医行天下,救死扶伤。我有一双妙手,可救人,亦能杀人!...
战国第一纨绔简介emspemsp关于战国第一纨绔公元前361年,战国时代,大争之世。这一年,一个满心壮志的年轻人孙膑刚刚告辞了师傅下山,准备去魏国安邑投奔自己的师兄庞涓。这一年,庞涓还是魏国的大将军,位高权重。霸主魏国威震天下...
她本是一代绝世特工,意外穿越成了不受宠且巨丑无比的弃妃。没关系,她空间在手,药丸一吃倾国倾城。下人不听话?打残!绿茶装可怜?毒哑!什么渣男贱女还敢到她面前嚣张,她毒的她们六亲不认!更有可爱萌宝给她撑腰。娘亲,听说爹爹休了你?没关系,我已是天下盟主,给你发了招亲令五国国君都来求亲了。寒王咬牙切齿,转头柔情似水对她说道爱妃,本王错了。求你回家吧!...
尸毒简介emspemsp关于尸毒舍友彻夜不归之后,宿舍出现了死人蛆。第二天竟然还有个漂亮女人进来,结果被我无意间撞破她和舍友啪啪啪。可舍友早已是个死人。首发po18kcomwoo16com...